If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+16^2=34^2
We move all terms to the left:
a^2+16^2-(34^2)=0
We add all the numbers together, and all the variables
a^2-900=0
a = 1; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·1·(-900)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*1}=\frac{-60}{2} =-30 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*1}=\frac{60}{2} =30 $
| 2+x+2=3+7 | | 6x−1−5x+5=x+4 | | -12=2/13(x) | | x-45=-27 | | x+10+2x=10+2x–5 | | b+(-11)=9 | | 20p+648=838 | | 18m+25=15m−5 | | 20+14.50w=2812.50w | | 33=−16+7x | | -7=(3/2)(r)+5 | | 20+14.5w=28+12.50w | | 2+7z^2=4z | | 1/6d=2/6 | | –8q=3−9q | | 5(4x-3)^3/2=625 | | -7=(3/2r)+5 | | 29-6x=5(-5x+2) | | 10-x=2x+16 | | 6=i=23 | | 8(x)=5x–12 | | 8=u−5 | | -35=10x-3x | | -3+k5=3 | | 16x+10=4x+34 | | –10+6v=4v | | 20+14.50w=28+12.5w | | 3+10=8x | | 22x+15=18x+47 | | 3x+(3-0.5x)=11 | | 14+k=2k+6 | | 9n+7=6n+37 |